martes, 27 de marzo de 2012

MEMBRANA PLASMATICA

MEMBRANA PLASMÁTICA
Introducción
Las células están separadas del medio que las rodea por una delgada lámina denominada membrana plasmática, que define los límites de las mismas.
Hace 3700 millones de años, la formación espontánea de una estructura similar a la membrana plasmática de las células actuales permitió aparición de los primeros seres vivos. Sin esta barrera protectora, las células estarían expuestas a los rigores del mundo externo, no podrían regular su medio interno y, en consecuencia, no serian viables. La membrana plasmática no aísla a la célula completamente sino que constituye una barrera altamente selectiva, que tiene la propiedad de regular el intercambio de materiales entre la célula y el medio que la rodea.
La membrana es una estructura muy delgada: sólo tiene un espesor de 6 a 10 nm (1nm=10-9m). Por lo tanto, se necesitarían mil membranas plasmáticas apiladas, una sobre otra, para igualar el espesor de una hoja de papel. Precisamente debido a su delgadez, cuando se examina una célula al microscopio óptico convencional, puede observarse sin dificultad el interior de la misma; en el mejor de los casos podrá apreciarse el contorno de la membrana, pero nunca podrá distinguirse su ultraestructura. Recién las primeras microfotografías al microscopio electrónico demostraron que la ultraestructura las membranas era siempre la misma. Esta estructura se denominó unidad de membrana y la misma no sólo es válida para la membrana plasmática, sino para casi todas las membranas celulares.
FUNCIONES DE LA MEMBRANA PLASMÁTICA
Como ya se mencionó, las membranas no son simples barreras sino que:
·  Definen la extensión de la célula y establecen sus límites.
·  Constituyen barreras selectivamente permeables, dado que impiden el intercambio indiscriminado de sustancias entre el citoplasma y el medio extracelular. La membrana plasmática, gracias a sus propiedades fisicoquímicas, está capacitada para transportar de un lado a otro determinados solutos, macromoléculas y complejos macromoleculares. Sin embargo, hay moléculas, que a pesar de ser toxicas para la célula, pueden ingresar sin dificultad a la misma a través de la membrana. Un ejemplo seria el CO (monóxido de carbono).
·  Controlan las interacciones de la célula con el medio extracelular (tanto con la matriz extracelular como con otras células vecinas). Permite a las células reconocerse, adherirse entre sí cuando sea necesario e intercambiar materiales e información.
·  Intervienen en las respuestas a señales externas a la célula. La membrana posee receptores, que son moléculas o conjuntos de moléculas, capaces de reconocer y responder a señales provenientes del medio extracelular portando información específica. Cuando dichas señales llegan hasta la membrana plasmática, se desencadenan señales internas en la célula, tanto activadoras como inhibitorias de distintos procesos celulares. Como ejemplos de estas señales externas podemos citar a los factores de crecimiento que favorecen la división celular.
Singer y Nicholson propusieron en 1972 un modelo estructural para las membranas al cual denominaron modelo del mosaico fluido. De acuerdo al mismo las membranas son “disoluciones bidimensionales de lípidos y proteínas.” Según este modelo, la estructura de la membrana sería una delgada lámina formada por dos capas superpuestas de lípidos (también llamadas hemimembranas), con la fluidez propia de los aceites, en la cual se encuentran insertadas proteínas. Esto le confiere el aspecto de un “mosaico”.

Esquema del "Modelo del mosaico fluido" de las membranas

Las membranas no son estructuras estáticas ni rígidas. Están formadas por un conjunto de moléculas hidrofóbicas e hidrofílicas que se mantienen unidas por enlaces, en general, no covalentes. Una de las principales características de las membranas biológicas es su alto grado de fluidez. Esto implica que sus lípidos y proteínas pueden desplazarse libremente en todas las direcciones, pero siempre sobre el plano de la membrana. De allí entonces la denominación de “mosaico fluido”; a esta propiedad también se la conoce como difusión lateral.
Las membranas también presentan glúcidos unidos por enlaces covalentes a lípidos y proteínas. Esto da lugar a los llamados glucolípidos y glucoproteínas, respectivamente.
Estas membranas carecen de resistencia mecánica y en muchas células, como en el caso de hongos, bacterias y plantas están reforzadas por paredes celulares.
1. COMPOSICIÓN DE LAS MEMBRANAS BIOLÓGICAS
Todas las membranas biológicas de los seres vivos, tanto la membrana plasmática, como las de las organelas, están formadas por:
A.   Lípidos.     B.    Proteínas       C.    Glúcidos
La proporción de cada uno de estos componentes varía de acuerdo a la función que realiza cada tipo de membrana. Por ejemplo, las membranas mitocondriales tienen una proporción muy elevada de proteínas.
A. Lípidos
La variedad de lípidos presentes en las membranas es muy amplia; sin embargo, todos poseen una característica en común: son moléculas anfipáticas. Esto significa que sus moléculas contienen una zona hidrofílica o polar y una hidrofóbica o no polar.
Hidrofóbica es aquella sustancia que es repelida por el agua o que no se pueden mezclar con ella. Ejemplos de hidrófobos son los aceites.
Hidrofílica es el comportamiento de toda molécula que tiene afinidad por el agua.                                                                                                                  Anfipaticos son sustancias simultáneamente hidrofílicos e hidrofóbicos.                              Los fosfolípido, posee una "cabeza" polar, hidrofílica y dos "colas" no polares, hidrofóbicas.
Los fosfolípidos son los lípidos más abundantes en las membranas. Debido a su carácter anfipático, los fosfolípidos, en un medio acuoso se organizan espontáneamente conformando la denominada bicapa lipídica. Las cabezas polares están orientadas hacia el medio acuoso (intra y extracelular) y las colas hidrofóbicas hacia el medio lipídico, es decir, al interior de la bicapa, constituyendo la matriz de la membrana. A su vez, estas bicapas tienden a cerrarse espontáneamente sobre sí mismas formando vesículas, es decir, compartimientos cerrados en toda su extensión tridimensional, similares a una esfera.

Esquema de un fosfolípido




Corte esquemático de una vesícula de fosfolípidos

La bicapa de fosfolípidos funciona principalmente como armazón estructural de la membrana y como barrera que impide el pasaje de sustancias hidrosolubles a través de la misma; esto último es debido al carácter fuertemente hidrofóbico de la matriz de la membrana.
Los fosfolípidos más frecuentes de las membranas son la fosfatidiletanolamina, la fosfatidilcolina, la fosfatidilserina y la esfingomielina.

 La estabilidad de las bicapas lipídicas esta dada por:
  • interacciones hidrofóbicas entre las colas hidrocarbonadas.
  • fuerzas de van der Waals entre las colas hidrofóbicas.
  • fuerzas electrostáticas y puentes hidrogeno entre las cabezas polares de los lípidos, ya sea entre ellos mismos y con las moléculas de agua de los medios extra e intracelular.
Como se notará todas estas son uniones débiles (no covalentes) y le confieren simultáneamente estabilidad y fluidez a la membrana.
Las cadenas hidrocarbonadas de los ácidos grasos que forman parte los fosfolípidos (también denominadas “colas” o grupos acilo), pueden presentarse:
  • saturados (sin dobles enlaces)
  • monoinsaturados (con un único doble enlace)
  • poliinsaturados (más de un doble enlace)
                                                                                               


El colesterol es un esteroide que se encuentra en un alto porcentaje en la membrana plasmática de las células animales. Su concentración varía mucho de un tipo de membrana a otro; en animales hay membranas donde el colesterol constituye hasta el 50% del total de los lípidos. Contrariamente, la mayoría de las células vegetales y bacterianas carecen de colesterol.
El colesterol, al ser también una molécula anfipática, presenta una orientación similar a la de los fosfolípidos: el grupo hidroxilo (polar) se orienta hacia el exterior de la bicapa y el sector hidrofóbico hacia el interior de la misma.





                                                             
Las funciones del colesterol se pueden resumir de la siguiente manera:
  • Inmoviliza los primeros carbonos de las cadenas hidrocarbonadas. Esto hace a la membrana menos deformable y menos fluida, es decir, la estabiliza. Sin colesterol, la membrana necesitaría de una pared celular que le otorgue contención mecánica.
  • Previene el compactamiento de las cadenas hidrocarbonadas a bajas temperaturas, ya que evita que las colas se junten y se “cristalicen” (adopten una estructura muy compacta).
B. Proteínas 
Mientras que los lípidos ejercen principalmente una función estructural, las proteínas no sólo desempeñan un rol estructural sino que además son las responsables de las funciones específicas de las membranas biológicas. Estas según su función pueden agruparse en:enzimáticas, de transporte, receptoras y de reconocimiento. Diferentes membranas tienen distinta proporción y composición de proteínas, de acuerdo a sus funciones. En otras palabras, son las proteínas las que le otorgan distintas funciones a las membranas. Estas en su mayoría son proteínas globulares.
Según su ubicación en la membrana se clasifican en:
-Proteínas intrínsecas, integrales o transmembrana: Pueden atravesar total o parcialmente la bicapa, asomando a una o ambas superficies de la misma. Únicamente pueden ser extraídas de la membrana por medio de detergentes que rompen la bicapa. Tienen un sector hidrofóbico, que es el que esta insertado en la membrana y una o dos regiones hidrofílicas, expuestas a los medios intra y extracelulares (ambos acuosos). De lo anterior se deduce que estas proteínas son moléculas anfipáticas. La porción que atraviesa la membrana  presenta una elevada porción de aminoácidos hidrofóbicos que interaccionan con las colas hidrocarbonadas de la matriz de la membrana. El sector proteico (también llamado dominio) expuesto a los medios acuosos suele tener estructura globular e interacciona con las cabezas polares de los fosfolípidos y con otras moléculas a través de uniones iónicas y puente de hidrógeno.
Dentro de las proteínas integrales encontramos:
  • Proteínas monopaso: La proteína “atraviesa” una sola vez la membrana.
  • Proteínas multipaso: La cadena polipeptídica atraviesa dos o más veces la bicapa lipídica. Por lo tanto, esta posee varias regiones hidrofóbicas insertadas en la matriz de la membrana alternada con sectores hidrofílicos que se exponen hacia los medios acuosos.                                                                                                                               
                                                 
Algunas proteínas multipaso atraviesan muchas veces la membrana y forman un cilindro hueco con un interior hidrofílico por el que pueden pasar moléculas pequeñas solubles en agua. Este es el principio de las proteínas canal que se analizaran más adelante.
Las proteínas integrales pueden difundir lateralmente y rotar sobre su propio eje. Las proteínas integrales suelen desplazarse acompañadas de los lípidos que las rodean ya que estos le ayudan a mantener su conformación.
Sin embargo, algunas proteínas integrales están ancladas a componentes del citoesqueleto y no pueden trasladarse. De esta manera intervienen en la morfología de la célula, por ejemplo alargada (o ahusada), cúbica, cilíndrica, etc.
-Proteínas extrínsecas o periféricas: Se encuentran sobre la cara externa o también interna de la membrana y pueden estar ligadas tanto a las proteínas integrales como a los fosfolípidos.

C. Hidratos de carbono
Las membranas celulares contienen entre un 2-10% de glúcidos. Estos se asocian covalentemente a los lípidos (glicolípidos) y a las proteínas (glicoproteínas).
Los glicolípidos (o glucolipidos) presentes en las membranas son los gangliósidos y cerebrósidos.       
Los gangliósidos se forman por la unión de un oligosacárido con la ceramida. La estructura de los cerebrósidos es similar, sólo que el hidrato de carbono no es uno oligosacárido sino una galactosa o una glucosa.
Los hidratos de carbono de los glucolípidos y las glucoproteínas, en su mayoría oligosacáridos, suelen ubicarse en la cara no citosólica de la membrana plasmática formando una estructura llamada glicocálix  cuyas funciones se pueden resumir de la siguiente manera:
· Proteger a la superficie de la célula de agresiones mecánicas o físicas. Como ejemplo podemos citar a las células situadas en la luz del intestino delgado que presentan un glicocálix muy pronunciado.
· Poseer muchas cargas negativas, que atraen cationes y agua del medido extracelular.
· Intervenir en el reconocimiento y adhesión celular. Actúan como una “huella dactilar” característica de cada célula, que permite distinguir lo propio de lo ajeno.
· Actuar como receptores de moléculas que provienen del medio extracelular y que traen determinada información para la célula, por ejemplo, receptores de hormonas y neurotransmisores.

Las diferencias entre los grupos sanguíneos se hallan determinadas por ciertos oligosacáridos muy cortos, presentes en las membranas plasmáticas de los glóbulos rojos o eritrocitos. Estos oligosacáridos sólo difieren en sus monómeros terminales y están ligados a una proteína transmembranosa o a una ceramida de la membrana plasmática. Por ejemplo, los eritrocitos pertenecientes al grupo sanguíneo A, presentan como monosacárido terminal una N-acetilgalactosamina y los del grupo B una galactosa. Cuando ambos monosacáridos terminales están ausentes estamos en presencia del grupo 0.

2. FLUIDEZ DE LA MEMBRANA
Como ya se mencionó, las membranas son estructuras dinámicas donde los componentes pueden desplazarse en todas las direcciones sobre el plano de la bicapa. De ahí que el modelo reciba el nombre de mosaico fluido.

Movimientos de los fosfolípidos en una bicapa liplídica
2.1. MOVILIDAD DE LOS COMPONENTES DE LAS MEMBRANAS
Existen tres tipos de movimientos posibles en las membranas:
  • rotación (sobre su propio eje)
  • traslación (o difusión lateral) sobre el plano de la membrana.
  • flip-flop
El movimiento de flip-flop es el intercambio de fosfolípidos de una monocapa (o hemimembrana) a la otra; está sumamente restringido, debido a la dificultad que posee la cabeza polar para atravesar el medio hidrofóbico de la matriz de la membrana. De allí que no sea un movimiento que ocurra de manera espontánea sino que está mediado por enzimas denominadas flipasas.
Tanto los movimientos de difusión lateral como el de rotación se llevan a cabo sobre la misma hemimembrana de la bicapa lipídica.
EFECTO DE LA TEMPERATURA SOBRE LA FLUIDEZ
El ascenso de la temperatura aumenta la energía cinética entre las moléculas y, por lo tanto, el movimiento de las colas hidrocarbonadas. Esto lleva a una disminución de las interacciones atractivas entre los mismos y a un aumento de los movimientos de rotación y de difusión lateral. Por el contrario, una disminución de la temperatura vuelve más rígida a la membrana ya “empaqueta” las colas hidrofóbicas de los fosfolípidos e impide sus movimientos. Si la temperatura desciende significativamente, la membrana puede llegar a “cristalizarse”, con la pérdida consiguiente de muchas funciones vitales de la membrana.
Los organismos que habitan regiones donde hay grandes amplitudes térmicas estacionales varían la composición de los fosfolípidos de sus membranas en forma periódica, asegurando así una fluidez más o menos constante durante todo el año. Por otra parte, organismos que habitan ambientes extremos poseen composiciones fosfolipídicas muy particulares en sus membranas, por ejemplo, los que viven a temperaturas inferiores a los 0ºC tienen membranas muy ricas en lípidos poliinsaturados.

4. FUSIÓN DE MEMBRANAS
Las membranas tienen una elevada capacidad para fusionarse entre sí. Por ejemplo, cuando una vesícula se aproxima a la membrana plasmática, a una cisterna o, inclusive, a otra vesícula, al entrar en contacto ambas superficies, las dos membranas se fusionan, constituyendo a partir de ese momento una sola membrana. Este fenómeno explica el tránsito de sustancias desde un compartimiento celular a otro, y desde las endomembranas a la membrana plasmática. Este es el principio en el que se basa la administración de fármacos vehiculizadas dentro de liposomas, que son vesículas fosfolipídicas artificiales que contienen alguna droga de interés terapéutico. Cuando el liposoma se aproxima a la célula blanco (o target), la membrana del liposoma se fusiona con la membrana plasmática liberando su contenido directamente en el citoplasma de la célula. Este fenómeno permite que el contenido del liposoma sólo sea captado por ciertos tipos celulares y no por otros. Técnicas basadas en esta propiedad de las membranas se utilizan, por ejemplo, para combatir células tumorales.
5. PERMEABILIDAD DE LAS MEMBRANAS CELULARES
Como ya se ha mencionado la membrana plasmática es una barrera con permeabilidad selectiva que regula el intercambio de sustancias entre el citoplasma y el medio extracelular. Sus propiedades aseguran que las sustancias esenciales, como la glucosa, los aminoácidos y los lípidos entren a la célula fácilmente, que los intermediarios metabólicos permanezcan en la célula y que los productos de desecho, como la urea, abandonen la misma. Todo esto permite a la célula mantener el medio interno relativamente constante. La membrana, debido a sus características hidrofóbicas, es impermeable a la mayor parte de las moléculas hidrosolubles, como la glucosa, los aminoácidos y los iones en general. En cambio, las moléculas hidrofóbicas, siempre y cuando su tamaño no sea demasiado grande, pueden atravesarla fácilmente.
únicamente atravesarán la membrana las moléculas no polares y pequeñas como el O2, CO2, N2 e incluso el CO (tóxico), compuestos liposolubles como los ácidos grasos y esteroides y, además, a pesar de ser moléculas polares, el glicerol, la urea y el agua. El resto de las moléculas se transfiere de un lado a otro de la membrana gracias a proteínas integrales que actúan como transportadores; sin estas transportadoras dichas moléculas no pueden difundir a través de las membranas.

No hay comentarios:

Publicar un comentario